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Abstract: This paper starts with the presentation of results from an IPv6-darknet experiment that we conducted during
summer 2012. The experiment indicates that attackers are gaining interest in IPv6 networks and appropriate
security tools need to be readied. Therefore, we propose HoneydV6, a low-interaction IPv6 honeypot that can
simulate entire IPv6 networks and which may be utilized to detect and analyze IPv6 network attacks. Our
implementation extends the well-known low-interaction honeypot Honeyd. To the best of our knowledge, this
is the first low-interaction honeypot which is able to simulate entire IPv6 networks on a single host. The huge
IPv6 address spaces requires new approaches and concepts in order to enable attackers to find and exploit a
honeypot. We increase the chance for an attacker to find a target host in our IPv6 honeypot by reacting to the
attacker’s requests with the dynamic generation of new IPv6 host instances in the honeynet.

1 INTRODUCTION

In June 2012, the Internet Society arranged the World
IPv6 Launch Day, an event where well-known service
providers and web companies like Google or Yahoo!
started to enable IPv6 support for their customers.
With the increasing number of service providers

offering IPv6, the number of attackers aiming for
these networks may increase. In order to get an idea
of the current threat level in IPv6 networks, we started
an IPv6-darknet experiment in March 2012 using a
/48 network. A darknet is an address space that is
advertised and routed but does not provide any ser-
vices (Ford et al., 2006). All traffic entering a darknet
can be considered malicious. This eases classification
and subsequent analysis, because we do not have to
separate production traffic from attack traffic.
Due to the huge IPv6 address space, brute-force

network scanning of IPv6 addresses is not attractive
for an attacker and hence the probability to catch at-
tackers in a darknet is low. Nevertheless, the results
of our darknet experiment show that malicious IPv6
traffic is existent and increasing.
There may also arise new threats that are aimed

at specific weaknesses in the IPv6 design. A well-
known example for this trend is the published THC-
IPv6 Attack Toolkit (Heuse, nd) which exploits sev-
eral protocol-specific features, such as the IPv6 State-

less Address Autoconfiguration (Thomson et al.,
2007).
In order to analyse IPv6-related attacks, IPv6-

enabled security tools like Intrusion Detection Sys-
tems or virtual honeypots have to be deployed that
allow a deeper analysis of attack patterns. Virtual
honeypots provide an excellent mechanism to col-
lect information about network attacks and vulner-
abilities, because they provide a level of interactiv-
ity that cannot be achieved by darknets. A virtual
honeypot is a security device that has no production
value (Seifert et al., 2006). This can be something
like a computer or even a mobile phone which only
purpose is to attract attackers, so that their attacks can
be analysed. Low-interaction honeypots like Hon-
eyd (Provos, 2003)may even be used to simulate large
networks with thousands of routers and hosts.
We chose to extend the low-interaction IPv4 hon-

eypot Honeyd to HoneydV6, since it is able to simu-
late entire IPv4 networks on a single computer and
provides a lot of components that could be reused
in our IPv6 implementation. Further, Honeyd is the
fundamental part of a number of honeypot solutions
like Tiny Honeypot or the SCADA HoneyNet Project
and can be used to improve the capabilities of hon-
eypots like Nephentes (CERT Polska, 2012). There-
fore, by implementing IPv6 functionality into Hon-
eyd, the aforementioned honeypotsmay be adapted so
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that they are able to handle IPv6 connections as well.
Honeyd implements a customized network stack

to handle multiple simulated hosts on a single ma-
chine. The large number of available addresses in a
single IPv6 network requires a new honeynet design
approach. The static placement of virtual components
does not work, because an attacker is unlikely to find
a deployed honeypot within the large IPv6 address
space by chance. We therefore developed the concept
of random IPv6 request processing to allow attackers
to dynamically find and exploit our simulated hosts.
The next section presents the results from our

darknet experiment. Section 3 summarizes related
work. In Section 4 and 5, we present the IPv6 exten-
sion of Honeyd. Section 6 shows the results of per-
formance measurements of HoneydV6 and Section 7
concludes our work.

2 EXAMINING THE THREAT
LEVEL IN IPv6 NETWORKS

A couple of years ago, it was hard to find any mali-
cious or even unintentional traffic in IPv6 networks.
In 2006, Matthew Ford et al. published a traffic

statistic of their IPv6 darknet with a /48 prefix, which
may have been the world’s first IPv6 darknet (Ford
et al., 2006). Within approximately 16 months, they
captured about 12 ICMPv6 packets which were most
probably caused by misconfiguration and typograph-
ical errors resulting from the long and unwieldy IPv6
addresses. In comparison, Pang et al. observed in
2004 about 30,000 packets of background radiation
per second in a class A IPv4 network (Pang et al.,
2004).
In 2010, Geoff Huston presented the results of

his darknet experiment where he examined the back-
ground radiation in a 2400::/12 network provided by
APNIC for 9 days (Huston, 2010). The darknet re-
ceived about 21,000 packets. However, the used /12
address block was not vacant and about 1.6 percent
of the network addresses had already been allocated.
Therefore, it is hard to compare the results of this ex-
periment to earlier darknet results even though traffic
which was directed to allocated addresses was filtered
before further analysis. It is assumed that the received
traffic is caused by misconfiguration and probably a
small number of guess probes. Scans that are defi-
nitely produced by bots or viruses could not be de-
tected.
We set up a new /48 IPv6 darknet and monitored

the incoming traffic for 9 months including the time
around the World IPv6 Launch to confirm this as-
sumption. The address space was provided by the

tunnel broker “Hurricane Electric” and the incoming
traffic was tunnelled to our machine using a SIT tun-
nel.
While the probability that an attacker choses an

IPv6 address from our darknet is about 2−48, we ob-
served a total number of 1172 packets. The whole
traffic consists of TCP packets, much to our surprise,
we didn’t receive a single UDP or ICMPv6 packet.
Figure 1 shows the temporal distribution of the re-
ceived packets. As predicted, we received most of
the traffic around the World IPv6 Launch day. Even
though the number of received packets has decreased
since the World IPv6 Launch, we are still constantly
receiving packets.
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Figure 1: Number of received packets per day, increased
number of packets around the World IPv6 Launch day.

2.1 Backscatter

Most of the TCP traffic (1157 packets) seems to be
backscatter. This kind of traffic can be caused by mis-
configuration or by attackers who intentionally use
spoofed source addresses when sending packets to a
destination. The destination under attack creates a re-
spond packet to the spoofed source address. So in our
case, attackers spoofed addresses that belong to our
darknet address space.
In case of TCP it is rather simple to spot backscat-

ter traffic. A TCP handshake is essential to enable the
connection setup. Normally, this handshake cannot be
completed if the initiating client uses a spoofed source
address. If a target receives the initial TCP hand-
shake packet, where the SYN flag is set in the TCP
header, it tries to complete the handshake by answer-
ing with a TCP packet where SYN and ACK flags
are set. Hence, the reception of TCP darknet traffic,
where SYN and ACK flags are set, is a good indica-
tion of backscatter. Of course, it is possible to gen-
erate TCP packets with SYN and ACK flags set and
send it directly to a destination. However, we con-
cluded that the intentional forwarding of such packets
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to our darknet is very unlikely, since they would serve
no known purpose.
We continued our attack evaluation with an anal-

ysis of the attacked ports. Table 1 provides a source
port statistic for the received backscatter traffic.

Table 1: Source ports of the received backscatter packets.

Number of packets Source port Description
486 113 auth
327 22 ssh
186 6667 ircd
158 80 http

Port 113 belongs to the most occurring source
ports in our backscatter traffic. It is actually used
by the Ident protocol (Johns, 1993) which is able to
identify an owner of a TCP connection on a remote
multi-user system. The protocol is still used, for ex-
ample by IRC servers which connect back via Ident
to a requesting source in order to ensure a user’s iden-
tity (Oikarinen and Reed, 1993).
The 486 received packets with source port 113

came from 8 different source IPs. They are aimed
for 457 different destination IPs. This indicates that
457 different clients tried to connect to 8 different
servers. A peculiar aspect of all packets received
on port 113 is an unaltered acknowledgment number
for most of the sources with different destination ad-
dresses. Hence, the TCP handshake must have always
been initiated with the same initial sequence num-
ber with different source addresses. In some cases,
even the sequence number as well as acknowledgment
number stay unaltered.
As you can see in Table 1, we received 327 pack-

ets from source port 22 (ssh). The packets came from
8 different sources and were targeted at 295 differ-
ent destinations. Two of the source addresses are
also contained in the set of packets coming from port
113. Similar to the packets coming from port 113,
most packets from the same source share the same
acknowledgment number even though the targets are
different.
Furthermore, we received 186 packets targeted at

port 6667, commonly used by IRC (Kalt, 2000). All
packets came from the same source but had a different
destination addresses. The acknowledgment number
of all packets is equal.
We received further 158 packets coming from one

source IP using source port 80. Like the packets com-
ing from port 6667, the acknowledgment number and
the target port always stays the same, with one excep-
tion. The last packet received contains a different des-
tination port and a different acknowledgment number.
Geoff Huston also reported a huge amount of TCP

backscatter traffic where ACK and SYN flags are set.

He assumes misconfiguration as one possible expla-
nation for receiving these packets in his darknet. In
our case, almost all packets coming from the same
source, even packets with different target addresses,
share the same target port and acknowledgment num-
ber. This indicates a deliberate use of spoofed source
addresses when connecting to the server. It is possible
that these packets belong to a denial of service attack.
Because we might have seen only a subset of all pack-
ets belonging to an attack, we are not able to provide
a clearer statement about the attack’s purpose.

2.2 ACK Scans

We also received 15 packets where only the ACK flag
of the TCP header is set without any sign of a prior
TCP handshake. All 15 packets are coming from the
same /64 subnet, which belongs to the address space
of the tunnel broker “Hurricane Electric”. The miss-
ing handshake suggests that these packets are part of
an ACK scan, which is usually used to evaluate filter
rules of firewalls. The source port of these packets,
however, is Microsoft’s file sharing port 445, which
belongs to the most attacked ports in the IPv4 dark-
net experiment presented in (Pang et al., 2004). Geoff
Huston also received 141 TCP packets without an ini-
tial handshake and he also concludes that these pack-
ets belong to a network probe and rules out that these
packets may belong to backscatter traffic.

2.3 Summary

Even though our /48 IPv6 darknet recorded only light
traffic, we can say that the IPv6 network is not free
of threats anymore. Almost all received packets were
caused by spoofed source addresses and may belong
to denial of service attacks and we even received
packets that may be network probes. So far, we did
not receive any connection attempts that may be at-
tributed to viruses or bots.
We conclude that, in contrast to earlier darknet re-

ports, the IPv6 internet has become more interesting
for attackers.
Our IPv6 darknet has been an excellent tool to as-

sess the general network threat-level, however, is not
well suited to analyse network-level attacks in more
detail. Therefore, the next section looks at IPv6 hon-
eypots.

3 RELATEDWORK

The only IPv6-capable general purpose low-
interaction honeypot is Dionaea (Dionaea, nd), a
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honeypot which emulates well-known services like
SMB or SIP. It is able to detect remote shellcode
attacks using the emulation library libemu (Baecher
and Koetter, nd). In contrast to Honeyd, Dionaea
does not implement a customized network stack and
a single instance of Dionaea is not able to simulate
entire IPv6 networks. Although it is possible to
create honeynets by setting up multiple instances of
Dionaea, it is more challenging to maintain multiple
machines and expenses increase as additional per-
formance is needed. This approach is not usefully
applicable for IPv6 networks if a huge number of
honeypots needs to be deployed.
There already exist different approaches to set up

honeyfarms consisting of thousands of honeypots: In
(Vrable et al., 2005), the authors presented Potemkin,
an architecture to create a honeyfarm with thousands
of virtual machine based honeypots. A gateway dy-
namically creates virtual machines for incoming re-
quests and forwards the traffic to the machines. It is
not clear whether the gateway is able to process IPv6
traffic. The approach needs to filter network scans
because otherwise, a new machine would have to be
created for each scanned IP address which would lead
to performance problems. Of course, Potemkin faces
the same performance issues as most high-interaction
honeypots do. While Potemkin needs a handful of
servers to simulate 64,000 machines, low-interaction
honeypots like Honeyd are able to simulate the same
number of hosts on a single end user machine.
Recently, HoneyCloud was proposed (Clemente

et al., 2012), a cloud based honeypot that aims to be
able to handle thousands of attackers and to utilize
various log mechanisms and IDS’. HoneyCloud cre-
ates new virtual machine based high-interaction hon-
eypots for each attacker and is deployed in an elastic
compute cloud (EC2) using Eucalyptus. The system
utilizes different log mechanisms and is even able to
capture keystrokes. While the Potemkin honeyfarm
may assign multiple attackers to the same target ma-
chine, HoneyCloud assigns each attacker to a separate
high-interaction honeypot which writes events into
own log files in order to avoid log file mixtures. Hon-
eyCloud accepts SSH connections only and is cur-
rently not able to handle other services or even net-
work scans. That is a drawback when trying to gather
valuable information about bots and viruses in IPv6
networks because it is necessary to monitor the whole
range of ports and services. Furthermore, the need for
a cloud infrastructure makes it hard for smaller busi-
nesses or even private researchers to deploy the hon-
eypot without falling back on commercial solutions.

4 EXTENDING Honeyd TO
Honeyd V6

Honeyd is a low-interaction honeypot which has been
developed by Niels Provos in the C programming lan-
guage and is currently available in version 1.5c on the
project website1. We chose Honeyd as base for our
IPv6 honeypot since it is able to simulate entire IPv4
networks on a single host. It provides a framework
that enables users to write service scripts for the sim-
ulated machines, e.g. a script that simulates a telnet
service and captures all log-in attempts of an attacker.
These service scripts can be bound to addresses which
are managed by Honeyd.
The simulation of entire networks in Honeyd is

accomplished by a customized network stack imple-
mentation using the network capture library libpcap2
to bypass the host’s network stack. Even though
this approach is very flexible, it impedes the IPv6
extension because the existing IPv6 functionality of
the host’s operating system cannot be reused. The
packet processing has to be modified and essential
parts of entirely new protocols such as ICMPv6 or
the Neighbor Discovery Protocol (NDP) have to be
implemented.
In this section, we will describe the major IPv6

specific implementations. A number modifications
require a deeper understanding of Honeyd’s architec-
ture. We will therefore provide a deeper insight into
the technical background when required.

4.1 Adapting the Configuration
of Virtual Hosts

Honeyd can be configured by defining all hosts to be
simulated in a configuration file. The behaviour of
a simulated host can be specified via so-called sys-
tem templates. A template specifies system properties
such as open ports and their assigned scripts. List-
ing 1 shows a configuration file for an IPv4 network
containing two system templates called windows and
linux.
c r e a t e windows
s e t windows d e f a u l t t c p a c t i o n r e s e t
add windows t c p p o r t 21 ” s c r i p t s / f t p . sh ”

c r e a t e l i n u x
s e t l i n u x d e f a u l t t c p a c t i o n r e s e t
add l i n u x t c p p o r t 23 ” s c r i p t s / t e l n e t . p l ”
add l i n u x t c p p o r t 80 ” s c r i p t s / web . sh ”

1http://www.honeyd.org/
2http://www.tcpdump.org/
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s e t windows e t h e r n e t ” aa : 0 0 : 0 4 : 7 8 : 9 8 : 7 6 ”
s e t l i n u x e t h e r n e t ” aa : 0 0 : 0 4 : 7 8 : 9 5 : 8 2 ”

b ind 192 . 1 6 8 . 1 . 5 windows
b ind 192 . 1 6 8 . 1 . 6 windows
b ind 192 . 1 6 8 . 1 . 7 l i n u x

Listing 1: Honeyd example configuration.

A template is created using the create statement
followed by the template name. In this example, the
FTP port 21 of the windows template is opened and
attached to a script called ftp.sh. The ftp.sh script
contains just enough functionality to capture all log-
in attempts, an actual log-in is not possible. The set
statement assigns a MAC address to the template. By
using the bind statement, the windows template is
bound to the addresses 192.168.1.5 and 192.168.1.6
whereas the linux template is bound to the address
192.168.1.7.
Internally,Honeyd creates a new template for each

IP address binding which are basically copies of the
original defined template. The names of the copied
templates are changed from windows or linux to their
defined IP addresses so that a template belonging to
an incoming connection can easily be found by its
name.
The different templates are maintained in a splay

tree ordered by their names. A splay tree is a self
balancing binary tree where recently accessed ele-
ments are located close to the root (Sleator and Tarjan,
1985). This allows an efficient search for a connection
belonging to an incoming packet.
In HoneydV6, the syntax to define templates and

to assign scripts to configured ports in the configura-
tion file is left unchanged. Our modified configura-
tion parser allows users to bind templates to an IPv6
address in the same way as an IPv4 address. A bind
statement with a given IPv6 address followed by the
template name is sufficient to bind a template to an
IPv6 address.
The fact that the honeypot maintains templates in

a splay tree ordered by their names in a string repre-
sentation allows us to store IPv6 and IPv4 templates
in the same tree. It might be possible to improve the
performance by storing IPv4 and IPv6 templates in
two separate trees. However, our performance tests
show that the current performance is sufficient for
most scenarios (see Section 7).

4.2 Modifying Packet Processing

As soon as Honeyd receives an IPv4 packet, it
searches for the corresponding template based on the
target address. If it cannot find a template, the packet
will silently be discarded. If a packet is received for

which Honeyd is responsible, the packet will be for-
warded to a dispatcher. The dispatcher moves the
packet further to a TCP, UDP or ICMP processor, de-
pending on the IP payload. If the packet is a fragment,
then Honeyd will wait for all fragments to arrive and
will assemble the fragment before forwarding it to the
dispatcher.
The service scripts, such as the ftp.sh script of

the previous example, are connected to the matching
connection via socket pairs. Honeyd forwards incom-
ing traffic to the standard input of the assigned script
while the standard output of a script is sent back to the
attacker. In addition, scripts are able to print logging
information using their standard error output.
Similar to the IPv4 approach, HoneydV6 assem-

bles and forwards incoming IPv6 packets to a new
IPv6 packet dispatcher. We had to modify the orig-
inal TCP and UDP processor, so that they are able
to process both kinds of connections, IPv4 as well as
IPv6. The IPv6 dispatcher forwards received packets
to the new ICMPv6 or to the extended TCP and UDP
processor based on the payload type.
Fragmented IPv6 packets get reassembled before

they are forwarded to the IPv6 packet dispatcher.
This function required the implementation of an IPv6
packet assembler which evaluates the fragment exten-
sion header, if available, of each incoming packet.
The offset and length of each incoming fragment is
logged so that attacks which are based on packet frag-
mentation can easily be analysed.

Honeyd provides a number of further settings
and mechanisms such as proxy connections to high-
interaction honeypots, conditional templates and fin-
gerprinting. However, these features are out of the
scope of this document.

4.3 TCP and UDP

Honeyd’s packet dispatcher passes incoming TCP
and UDP packets to the corresponding callbacks.
These callback functions are named tcp recv cb
and udp recv cb respectively. After our modifica-
tions, these functions wrap around tcp recv cb46 and
udp recv cb46 which are able to handle IPv4 as well
as IPv6 packets.
Fortunately, these callbacks needed only minor

modifications. Depending on the address family, an
incoming packet is now mapped to the corresponding
structure as shown in the following code snippet of
the UDP callback:
if (addr family == AF INET) {
ip = (struct ip hdr ∗)pkt;
udp = (struct udp hdr ∗)(pkt + (ip−>ip hl << 2));

}else if (addr family == AF INET6) {
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ip6 = (struct ip6 hdr ∗)pkt;
get ip6 next hdr((u char ∗∗)&udp,ip6,IP PROTO UDP);
}

Listing 2: Protocol switches to handle IPv4 and IPv6.

The use of the two different structures in the same
functions had quite an impact on multiple code seg-
ments. However, this way a lot of code fragmentation
could be avoided and the packet processing is easier
to understand.
In quite a few sections of the TCP and UDP code,

the IPv4 functionality could not be reused and a pro-
tocol switch had to be implemented. One example is
the checksum and data length calculation, which had
to be updated in both callbacks.
The IPv6 packet processing needs to be aware of

possible extension headers. As shown in the previous
example, the actual payload cannot be retrieved di-
rectly, we first have to parse the chain of possible ex-
tension headers. The function get ip6 next hdr pro-
vides a pointer to a certain extension header or the
actual payload.
The structures to maintain UDP and TCP connec-

tions (udp con and tcp con) include a pointer to a tu-
ple structure which holds address details of a connec-
tion:
struct tuple {
...
//currently used to store the ipv4 addresses
ip addr t ip src;
ip addr t ip dst;
//currently used to store the ipv6 addresses
struct addr src addr;
struct addr dst addr;
uint16 t sport;
uint16 t dport;
...
};

Listing 3: Excerpt of the modified tuple structure to main-
tain a connection.

Honeyd uses the variables ip src and ip dst of
type ip addr t to store IPv4 addresses of a connec-
tion. This type is too small to store IPv6 addresses,
so we had to add the fields src addr and dst addr to
store IPv6 addresses.

4.4 Fragmentation

IPv6 fragmentation handling differs from IPv4 inso-
far, as only source nodes may fragment packets. We
implemented the functions ip6 send fragments and
ip6 fragment that handle fragmentation of outgoing
IPv6 packets that are larger than the maximum trans-
mission unit (MTU) and reassemble fragmented in-
coming packets. All fragments are maintained in a

splay tree using the following fragment6 structure:

struct fragment6 {
SPLAY ENTRY(fragment6) node;
TAILQ ENTRY(fragment6) next;
TAILQ HEAD(frag6q, frag6ent) fraglist;

struct addr src addr;
struct addr dst addr;

uint32 t ip6 id;
uint32 t total len;
uint8 t nxt hdr;
struct event timeout;
};

Listing 4: IPv6 fragment structure.

Besides address, length and ID, the structure con-
tains a queue which stores received fragments be-
longing to a packet. When a packet arrives, the
function ip6 fragment find is used to search for al-
ready received fragments in the splay tree. If the
received packet is the first received fragment then
ip6 fragment new is used to insert a new entry into
the splay tree. If other fragments have already been
received, then ip6 insert fragment is used to add the
packet to the fragment queue.
Outgoing packets bigger than the Honeyd MTU

are fragmented using ip6 send fragments. Path MTU
discovery has not yet been implemented and a
fixed defined size HONEYD MTU is used instead.
ip6 send fragments computes the number of frag-
ments needed and prepares the fragments by insert-
ing a fragmentation extension header before using
honey deliver ethernet6 to send each single fragment.

4.5 Implementation of the Neighbor
Discovery Protocol

While IPv4 uses ARP for address resolution, IPv6 is
based on the new so-called Neighbor Discovery Pro-
tocol (NDP). Therefore, HoneydV6 has to implement
the essential parts of NDP.
For every IPv4 template that is created, Honeyd

creates an ARP entry which contains the Ethernet ad-
dress in a splay tree that can be used later to handle
ARP requests. For IPv6 templates, HoneydV6 creates
a further splay tree representing a neighbor cache. It
contains the Ethernet addresses of all IPv6 templates
needed by the NDP.
We implemented the essential parts of NDP that

are required to properly advertise the simulated ma-
chines in the network:

• Send and Process Neighbor Solicitations - If a
machine needs the Ethernet address of a node in
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the local network, it sends a neighbor solicita-
tion message to that node. A host receiving a
neighbor solicitation answers with a neighbor ad-
vertisement containing the corresponding Ether-
net address.

• Send Router Solicitations and Process Router ad-
vertisements - It is very probable that in practice
HoneydV6 will run behind a router. In order to
find all routers and their Ethernet addresses, Hon-
eydV6 sends a router solicitation to the all routers
multicast address and afterwards collects incom-
ing router advertisements.
Because NDP goes hand in hand with ICMPv6,

the core functionality to handle NDP packets is con-
tained in icmp6.c. Honeyd’s dispatcher was modified
to forward ICMPv6 packets to the ICMPv6 dispatcher
function icmp6 recv cb. The function passes the in-
coming packet to the corresponding handler depend-
ing on the ICMPv6/NDP type.
switch(icmp6−>icmp6 type){
case ND NEIGHBOR SOLICIT:
handle neighbor solicitation(inter,ip6, icmp6);
break;

case ND NEIGHBOR ADVERT:
handle neighbor advertisement(inter,ip6, icmp6);
break;

case ND ROUTER ADVERT:
handle router advertisement(inter,ip6 ,icmp6);
break;

case ICMP6 ECHO REQUEST:
handle echo request(inter,ip6, icmp6,
ntohs(ip6−>ip6 plen)+IP6 HDR LEN+ETH HDR LEN

break;
default:
syslog(LOG DEBUG,”unhandled icmp6 type: %d”,

icmp6−>icmp6 type);
break;

}

Listing 5: ICMPv6 dispatcher.

4.6 Support for the Monitoring
of Network Scans

One of Honeyd’s advantages is its ability to simulate
entire network topologies containing virtual routers
and virtual low-interaction hosts. This mechanism
allows researchers to analyse the way network scans
are performed and how bots try to find new hosts to
infect. RFC 5157 (Chown, 2008) suggests a num-
ber of possible ways to reveal IPv6 hosts more effi-
ciently than brute-force network scanning. Network
scanning tools like scan6 of the SI6 Networks’ IPv6
Toolkit (SI6 Networks, 2012) already started to im-
plement these scanning techniques.
In order to allow researchers to observe new kinds

of scanning methods in IPv6 networks, we adapted

Figure 2: An example IPv6 network that can be simulated
using HoneydV6 and the configuration presented in Listing
6.

the internal routing mechanisms ofHoneyd to support
IPv6 packet routing.
Listing 6 shows an example configuration for the

network topology presented in Figure 2. In order
to simplify the configuration, the configuration syn-
tax corresponds with the syntax used to define IPv4
network topologies. Our example contains four vir-
tual routers and three virtual low-interaction hosts.
Incoming network packets need to traverse an entry
router, which in this example has the IPv6 address
2001:db8::99. An entry router can be defined using
the route entry statement followed by the router ad-
dress and the reachable network which in this case is
2001:db8::0/32.
By using the add net and the link statement,

the entry router is directly connected to Router 2
and Router 3 with the addresses 2001:db8:1::15 and
2001:db8:1::16 respectively. Router 2 covers the
network 2001:db8:3::/48 and has the virtual low-
interaction Host 1 with address 2001:db8:3::10 at-
tached.
Because of the first add net statement, Hon-

eydV6 knows that packets targeting the network
2001:d8:3::/48 need to be forwarded to Router 2.
A link statement defines what addresses are directly
reachable through a router. In case of Router 2, all
addresses within the network 2001:db8:3::/48 are di-
rectly reachable which includes Host 1.
In order to simulate a realistic network packet

routing, the following ICMPv6 types had to be im-
plemented:

• Time Exceeded - Each time an IPv6 packet tra-
verses a router, its hop limit gets decreased. As
soon as the hop limit reaches zero, HoneydV6
sends an ICMPv6 Time Exceeded message back
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to the source.
• Destination Unreachable - If a packet is sent to an
address within Honeyd’s address space to an un-
defined virtual host or to a closed UDP port then
the honeypot replies with an ICMPv6 Destination
Unreachablemessage.

Both packet types are essential in order to make
network scanning tools like traceroute6 work and to
allow attackers exploring the virtual network.
The simulation of physical network properties, as

provided by the Honeyd IPv4 version, was adapted to
also work with IPv6 packets. This includes the com-
putation of the hop limit of a packet and functions that
find and compare IPv6 networks.
It is possible to define factors like packet loss or

network latency as shown in Listing 6. In this exam-
ple, a packet transfer from Router 1 to Virtual Host
1 takes about 100 milliseconds while a packet from
Router 3 to Virtual Host 3 needs about 800 millisec-
onds. If no latency is set, then a packet is passed to
the next hop without any extra delay except the time
needed for computation.
Of course, the provided example configuration

requires that the covered prefixes are advertised
throughout the global IPv6 Internet and attacking traf-
fic is forwarded to the machine HoneydV6 is running
on.

r o u t e e n t r y 2001 : db8 : : 9 9 network 2001 : db8 : : 0 / 3 2

b i nd 2001 : db8 : : 9 9 r o u t e r 1
b i nd 2001 : db8 : 1 : : 1 5 r o u t e r 2
b i nd 2001 : db8 : 1 : : 1 6 r o u t e r 3
b i nd 2001 : db8 : 2 : : 1 6 r o u t e r 4

b i nd 2001 : db8 : 3 : : 1 0 h o s t 1
b i nd 2001 : db8 : 2 : : 1 0 h o s t 2
b i nd 2001 : db8 : 4 : : 1 0 h o s t 3

r o u t e 2001 : db8 : : 9 9
add n e t 2001 : db8 : 3 : : 0 / 4 8 2001 : db8 : 1 : : 1 5
l a t e n c y 100 ms

r o u t e 2001 : db8 : : 9 9
add n e t 2001 : db8 : 2 : : 0 / 4 8 2001 : db8 : 1 : : 1 6

r o u t e 2001 : db8 : : 9 9
add n e t 2001 : db8 : 4 : : 0 / 4 8 2001 : db8 : 1 : : 1 6

r o u t e 2001 : db8 : 1 : : 1 6
add n e t 2001 : db8 : 4 : : 0 / 4 8 2001 : db8 : 2 : : 1 6
l a t e n c y 800 ms

r o u t e 2001 : db8 : : 9 9 l i n k 2001 : db8 : 1 : : 0 / 4 8
r o u t e 2001 : db8 : 1 : : 1 5 l i n k 2001 : db8 : 3 : : 0 / 4 8
r o u t e 2001 : db8 : 1 : : 1 6 l i n k 2001 : db8 : 2 : : 0 / 4 8

r o u t e 2001 : db8 : 2 : : 1 6 l i n k 2001 : db8 : 4 : : 0 / 4 8

Listing 6: Extract of HoneydV6 configuration to simulate
the network shown in Figure 2.

5 PITFALLS

We faced two major issues when we extended Hon-
eyd to HoneydV6. One problem was that scope IDs,
which were embedded in link-local addresses, com-
plicated address comparisons needed to route packets.
Besides that, we had to deal with memory access vio-
lations caused by dynamic arrays. The following two
subsections explain both issues in more detail.

5.1 Scope IDs Stored in Link-local
Addresses

The link-local interface addresses that we retrieved
using the libdnet network library function intf get
contained scope IDs directly embedded in the ad-
dress. In order to convert these addresses into
valid link-local addresses, the scope IDs had to
be removed. We wrote a simple function called
addr remove scope id to remove the scope ID from
link-local addresses.
static void addr remove scope id(struct addr∗ ip6) {
if (ip6−>addr data8[0]==0xfe && ip6−>addr data8[1]==0x80) {
/∗ delete scope id ∗/
ip6−>addr data8[2]=0;
ip6−>addr data8[3]=0;

}

}

Listing 7: Function to remove scope IDs.

HoneydV6 retrieves the interface of an incoming
packet by using libpcap. Therefore there is no need to
store a removed scope ID.WhenHoneydV6 initializes
and inspects an interface, it removes scope IDs of all
it’s IPv6 address aliases directly after acquiring the
interface information with intf get.
for(i=0;i<inter−>if ent.intf alias num;i++){
if (inter−>if ent.intf alias addrs[i].addr type == ADDR TYPE IP6){
/∗ clear the embedded scope id if its a link−local address ∗/
ip6addr = &inter−>if ent.intf alias addrs[i];
addr remove scope id(ip6addr);

}
}

Listing 8: Removing the scope IDs of all link-local alias
addresses.

5.2 Use of Dynamic Arrays

The original Honeyd version maintains information
about an interface in a custom interface structure
shown in Listing 9. This structure has a field of type
intf entry followed by other fields.
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struct interface {
TAILQ ENTRY(interface) next;

struct intf entry if ent;
int if addrbits;
struct event if recvev;
pcap t ∗if pcap;
eth t ∗if eth;
int if dloff;

char if filter[1024];
};

Listing 9: Structure used to store interface information.

The intf entry structure contains a dynamic array
which may overwrite the following fields. The func-
tion intf get, which is used in interface.c to retrieve
interface information, fills the dynamic array with ad-
dress aliases depending on the amount of reserved
memory. If no further memory is available then no
alias will be returned. This was not a problem in the
IPv4 version because no address aliases needed to be
requested. In the IPv6 version, we need to find out the
address aliases to get information about assigned IPv6
addresses too. Therefore, we extended the memory
allocation for the interface and moved the intf entry
structure to the end of the interface structure.

6 COVERING HUGE ADDRESS
SPACES USING RANDOM IPv6
REQUEST PROCESSING

The huge address space of an IPv6 subnet makes it
hard, if not almost impossible, for an attacker to find a
single host on the network by pure chance. While this
fact is very welcome in common networks, it impedes
the behavioral analysis of an actual attacker who may
or may not be able to find a machine.
We want to observe IPv6 network scan techniques

and analyse the attacker’s actions when he actually
finds a running host. In order to accomplish this, we
extended HoneydV6 with a mechanism that dynam-
ically creates simulated hosts on-demand and ran-
domly accepts IPv6 connections. Hence, after a cer-
tain number of connection attempts, an attacker will
definitely find a machine to exploit.
Furthermore, all connection attempts are logged,

even to IPv6 addresses that are not defined in the con-
figuration file. It allows us to analyze IPv6 network
scans and to find new scan patterns.
When a packet arrives, HoneydV6 tries to find the

matching virtual low-interaction host. If no host can
be found, then a new template will be dynamically
created with a specified acceptance probability. A

user can enable the so-called IPv6 random mode by
using the randomipv6 statement followed by the ac-
ceptance probability. In order to define what template
to use for dynamically created machines, the name of
a default template has to be specified right after the
acceptance probability.
Consider the example configuration in Listing 10

where we define the template randomdefault to be the
default template. The default template has the web
server and the FTP port open and assigned to the cor-
responding scripts. Besides the configured open ports
and the matching script assignments, the template has
a defined Ethernet address. HoneydV6 replaces the
last three bytes of this Ethernet address with randomly
generated bytes for each newly created template. This
corresponds to Honeyd’s default behavior in the IPv4
version. Currently, we are supporting only one default
template.
c r e a t e r andomde f au l t
s e t r andomde f au l t d e f a u l t t c p a c t i o n r e s e t
add r andomde f au l t t c p p o r t 21 ” s c r i p t s / f t p . sh ”
add r andomde f au l t t c p p o r t 80 ” s c r i p t s / web . sh ”
s e t r andomde f au l t e t h e r n e t ” aa : 0 0 : 0 4 : 7 8 : 9 8 : 7 8 ”

randomipv6 0 . 5 r andomde f au l t 256

randomexclude 2001 : db8 : : 1
randomexclude 2001 : db8 : : 2
randomexclude 2001 : db8 : : 3
Listing 10: Honeyd configuration to randomly accept IPv6
connections.

If the honeypot randomly decides to reject a re-
quest and not to create a machine for it, then the tar-
get address will be blacklisted. Future requests to a
blacklisted address will always be ignored to keep the
system state consistent and to avoid revealing the hon-
eypot.
In some cases it may be useful to exclude certain

addresses from the automatic template creation, e.g.
if other nodes are in the same network. This can be
done by using the randomexclude statement. An ex-
cluded address is automatically blacklisted and Hon-
eydV6 will ignore requests to this address.
It is possible to define an upper bound for the num-

ber of dynamically created templates by the honey-
pot. This number can be set after the default template
name. In the example above, the maximum number
of allowed templates is 256. It is important to re-
strict the number of dynamically created virtual low-
interaction hosts in order to avoid memory-exhaustion
attacks. Each created machine and each blacklisted
address causes memory consumption until the maxi-
mum number of allowed machines is reached.
We recommend to restrict the number of dynami-

cally created machines as well as the acceptance prob-
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ability to an appropriate low value depending on the
use case. A large number of uniformly distributed
host may easily reveal the honeypot.

7 PERFORMANCE TESTS

Our modified version of Honeyd still fully contains
the original IPv4 implementation. Thus it is able to
handle IPv4 and IPv6 packets at the same time. When
we implemented the IPv6 functionality, we tried to
modify the IPv4 code as little as possible in order to
avoid new programming errors and negative impact
on the IPv4 performance. Nevertheless, in some cases
minor modifications to the IPv4 work flow had to be
done. We conducted some measurements to quantify
the performance of the new IPv4 and IPv6 code in
HoneydV6.

7.1 Comparison: IPv4 and IPv6
Throughput

In order to evaluate the performance impact of our
IPv6 modification, we compared the average appli-
cation layer throughput of the original IPv4 Honeyd
1.5c with HoneydV6. We developed a simple Hon-
eyd benchmark service script and a corresponding
client which allow us to measure the time needed to
transfer larger files over the network to the honeypot.
The original honeypot as well as the IPv6 modifica-
tion were installed on a Fujitsu PRIMERGY TX200
S5 Server with an Intel Xeon processor 5500 series
and 4096 MB of RAM running Ubuntu 12.04. The
benchmark client was installed on a Lenovo ThinkPad
L520 with an Intel i5-2450M CPU and 4096 MB of
RAM. Both computers were connected via a Brocade
FWS648G FastIron switch using Gigabit Ethernet.
Table 2 shows the results for transferring 50 MB

and 100 MB from the client via IPv4 and IPv6 to the
honeypot benchmark service.

Table 2: Comparison of transmission time in seconds be-
tween the original Honeyd version 1.5c and HoneydV6.

Filesize 1.5c (IPv4) V6 (IPv4) V6 (IPv6)
50 MB 15.98 s 16.19 s 16.33 s
100 MB 31.85 s 31.94 s 32.36 s

For each experiment, Table 2 shows the median
from 5 runs. It takes about 16 seconds to transfer
50 MB to the honeypots and about twice as much
time to transfer 100 MB. In case of transferring 50
MB over IPv4, the original 1.5c version of Honeyd
is approximately 0.2 seconds faster than HoneydV6.
For sending 100 MB, the original Version was about

0.09 seconds faster than our modified version. This
indicates that the overhead is in the magnitude of
the measurement error and neglectable. The over-
head is most probably caused by a number of newly
added IPv4/IPv6 switches in the source code. Further-
more, the IPv6 transfer is insignificantly slower than
the IPv4 transfer of both versions. HoneydV6 needed
approximately 0.35 seconds longer than the original
1.5c version to transfer 50 MB and about 0.51 sec-
onds to transfer 100 MB over IPv6.

7.2 Scalability of HoneydV6

While throughput measurements can help to get an
impression of the performance impact caused by the
IPv6 modifications, throughput is not a very useful
criteria to evaluate a honeypot for its suitability in
a network. A honeypot like Honeyd rather needs to
be able to handle a large number of connections than
transferring huge files.
Provos and Holz measured for example the num-

ber of TCP requests per second that Honeyd is able to
process (Provos and Holz, 2008). Since we are par-
ticularly interested in the performance impact on the
application layer, we used the web server benchmark
servload (Zinke et al., 2012)3 to measure the num-
ber of HTTP GET requests that HoneydV6 is able to
process per second. Servload is capable of replay-
ing a previously captured traffic log file based on the
timestamps of the contained packets. We generated a
log file containing 20,000 HTTP GET requests from
different source addresses with 600 requests per sec-
ond. HoneydV6 was configured to simulate a single
machine which was bound to an IPv4 and an IPv6
address and which delivers the web.sh script that is
shipped with the original Honeyd version 1.5c when
getting requests on port 80. The web.sh script simu-
lates a Microsoft IIS 5.0 and delivers either a direc-
tory listing of the server or a 404 NOT FOUND page.
Our generated requests demanded a non-existing in-
dex.html page so that the web.sh script responses with
an HTTP 404 NOT FOUND error code and a short
explanation.
As with the throughput measurements, we re-

peated the test run for the original Honeyd 1.5c and
compared the results with the IPv6 and IPv4 requests
of HoneydV6.
As shown in Table 3, the original Honeyd version

and HoneydV6 were able to process about 212 IPv4
requests/s. HoneydV6 managed to handle about 205
IPv6 request/s without any packet loss which is cur-
rently more than sufficient in an IPv6 network and

3Download avaible from http://www.salbnet.org/
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Table 3: Comparison of the number of HTTP GET requests
per second that Honeyd 1.5c and HoneydV6 is able to han-
dle without any packet loss.

1.5c (IPv4) V6 (IPv4) V6 (IPv6)
212.57 214.00 205.75

only slightly less than its IPv4 counterpart is able to
process.
We configured HoneydV6 to simulate just a sin-

gle target for our test runs. Since Honeyd main-
tains one connection entry for each connection in a
splay tree, regardless of existing connections with
the same target address, the performance difference
between benchmarking a single target compared to
benchmarking multiple targets is insignificant.

8 CONCLUSIONS AND FUTURE
WORK

While the general threat level in IPv6 networks is still
low compared to IPv4 networks, the results of our
IPv6-darknet experiment show the raising interest of
attackers in IPv6.
The honeypot HoneydV6 presented in this paper

provides an excellent foundation for future IPv6 net-
work security research. It can be used to observe
attacks in IPv6 networks and to reveal new network
scan approaches. HoneydV6 is based on the well-
known honeypot Honeyd which is the fundamental
part of a number of honeypot solutions like Tiny
Honeypot or the SCADA HoneyNet Project. These
projects can easily be extended to IPv6 networks us-
ing HoneydV6.

HoneydV6 is the first low-interaction honeypot
which is able to simulate entire IPv6 networks. Be-
sides IPv6 packet processing, HoneydV6 implements
necessary parts of the ICMPv6 and the Neighbor Dis-
covery Protocol. In order to observe new kinds of
scanning methods in IPv6 networks, we adapted the
internal routing mechanisms of Honeyd to support
IPv6 packet routing. In our performance tests Hon-
eydV6 performed comparable to Honeyd for both,
IPv4 and IPv6 networks. Further, we developed a
mechanism that randomly and dynamically generates
low-interaction IPv6 hosts, based on the requests of
an attacker, in order to increase the chances that an
attacker will encounter the honeypot within the huge
IPv6 address space.
We are currently setting up a honeynet based on

HoneydV6 together with research partners to observe
how the threat level in IPv6 networks develops.

Honeyd still contains some features that are sup-
ported in IPv4 networks only. One example is the

operating system fingerprintingmechanism, which al-
lowsHoneyd to emulate system-specific behavior. We
currently investigate how the new nmap IPv6 finger-
print format (Nmap, nd) can be reused to simulate
the network stack parameters of different operating
systems. HoneydV6 is a useful tool to deceive at-
tackers and to analyse how an attacker interacts with
network services. However, the honeypot is not able
to inspect UDP or TCP payload for malicious con-
tent which makes it hard to extract new exploits from
the received traffic. We are therefore working on a
connection between our IPv6 honeypot and the shell-
code detection library libemu (Baecher and Koetter,
nd) with the aim of simplifying remote exploit detec-
tion.
In order to promote further IPv6 research, we will

make the sources of our HoneydV6 implementation
publicly available at http://www.idsv6.de.
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