
Thomas Scheffler, University of Potsdam 1

An Implementation of a

Privacy Enforcement Scheme

based on the Java Security Framework using

XACML Policies

Thomas Scheffler, Stefan Geiss, Bettina Schnor

{scheffler, schnor}@cs.uni-potsdam.de

Department of Computer Science, University of Potsdam
Potsdam, Germany

September 8th, 2008

Thomas Scheffler, University of Potsdam 2

Overview

� Motivation and Idea

� XACML Access Policies

� Privacy Enforcement Scheme

� Conclusion and Outlook

Thomas Scheffler, University of Potsdam 3

Distributed Electronic Health Records

� Storage of patients medical history in Mobile EHRs

� Secure Data-Container

� Access to EHR via trusted infrastructure

� Integrated management of access rights
via Sticky-Policies

� Automatic policy enforcement

Agnes

Gonxha Bojaxhiu 12345-56789

MediCard

GP

Hospital
partial
data export

view

import

print

comment

Thomas Scheffler, University of Potsdam 4

Data Privacy for Medical Records

Question: How can the sensitive private data of a medical record
be protected in the presence of different actors?

� Sensitive data stored as semi-structured XML-Documents

� Distributed Access Control Framework

� Requests to resources must be evaluated at real time

� Deployment of trusted infrastructure

� Automated enforcement of authorisations

Data Privacy = Access Control + Usage Control

Thomas Scheffler, University of Potsdam 5

Owner Controlled Data Access Policies

� The Data Owner specifies the access policy for data. The Data User is
bound to follow this policy.

� The protected data are stored together with the usage policies as a
Sticky Policy Object and can be referenced anytime and anywhere by
different data users.

Data Owner Data User

(Private Data)Policy

Thomas Scheffler, University of Potsdam 6

Sticky Policies

� The Policy-Store holds

� Generic Policies

� User-generated Policies

� Demographic data about the patient
will be stored in the
Demographic-Data-Store

� The Medical-Data-Store contains
medical data about examinations
and treatments of the patient

Policy-Store

Medical-Data-Store

Demographic-Data-Store

Policy-Protected Patient Record

Meta Policies

Data Specific Policies

Patient Name

Patient Address

Practitioner X

Examination Event

Examination Event

Examination Event

Practitioner Y

Thomas Scheffler, University of Potsdam 7

XACML Access Policy

Thomas Scheffler, University of Potsdam 8

XACML

� eXtensible Access Control Markup Language (XACML) developed by
OASIS, current version 2.0

� Policy Language and Request/Response Language

Source: OASIS, XACMLv2

Thomas Scheffler, University of Potsdam 9

Rights-Expression Languages

� Common security semantics

� Greater expressability than simple ACL (conditional access, time
based function support, inference mechanism)

� Better suited for changing policies

� Higher level of abstraction

� Separation of policy expression from enforcement mechanisms

Thomas Scheffler, University of Potsdam 10

HealthRecord-Example

<HealthRecord>

<Policy PolicyId="1"
RuleCombiningAlgId="deny-overrides">

<Rule Effect="Permit">

<Target> ...

<Condition> ... </Condition>

</Rule>

</Policy>

<fileData>

<demographicData> ... </demographicData>

<insuranceData> ... </insuranceData>

</fileData>

<medicalHistory>

<examinationRoom>

<practitioner>

<practitioner.id>CN=Nic Riviera,
...</practitioner.id>

</practitioner>

<examinations>

<visit date="1988-06-01 16:35:27">

<diagnosis>Cancer</diagnosis>

<treatment>Chemo
therapy</treatment>

</visit>

<visit date="2005-08-30 10:35:27">

...

</visit>

</examinations>

</examinationRoom>

</medicalHistory>

</HealthRecord>

Patient Health-Record
(owned by Data User)

Examination Room
(owned by Data Author)

Visit
• Time

• Symptoms

• Diagnosis

• Treatment

Thomas Scheffler, University of Potsdam 11

Problem: Generic XACML Policy Rules

Generic Rule Example: Data Authors should be able to access their own
data entries

Implementation in XACML requires:

� Determination of current requestor via an XACML
SubjectAttributeDesignator

� Dynamic referencing of data author/owner of requested resource via
XPATH expression from the supplied ResourceAttributeDesignator

Problem: XACML v2.0 currently only supports the evaluation of static
XPATH expressions.

Thomas Scheffler, University of Potsdam 12

Solution: Generic XACML Policy Rules

Necessary implementation of a new XACML comparison function:

� Compare a X500 name with string type, evaluated as another X500
name

� Allow the dynamic referencing of owner names for arbitrary resources
through XACML string concatenation

<Condition FunctionId="function:xpath-node-element-x500-compare">

<Apply FunctionId="x500Name-one-and-only">

<SubjectAttributeDesignator DataType="x500Name" AttributeId="subject-id" />

</Apply>

<Apply FunctionId="string-concatenate">

<Apply FunctionId="string-one-and-only">

<ResourceAttributeDesignator AttributeId="resource-id"

DataType="http://www.w3.org/2001/XMLSchema#string" />

</Apply>

<AttributeValue DataType="string">

/parent::visit/parent::examinationRoom/parent::practitioner/@id

</AttributeValue>

</Apply>

</Condition>

Thomas Scheffler, University of Potsdam 13

Privacy Enforcement Scheme

Thomas Scheffler, University of Potsdam 14

Application (User)

Resource

Decision
request

Decision
response

Access request

Access
Permit / Deny

Access
Policy

Load Policy

Policy Enforcement Architecture

User
Authentication (PKI)

Policy Enforcement
Point (PEP)

Policy Decision Point
(PDP)

Thomas Scheffler, University of Potsdam 15

PEP Implementation

Enforcement process:

1. XACML Policies are translated into Java Permissions

2. A Custom Class Loader loads the application class with appropriate
PermissionCollection

3. Permissions are monitored and enforced by the Java SecurityManager
at application run time

Arbitrary applications can be started and data access can be

controlled via this mechanism

Thomas Scheffler, University of Potsdam 16

Policy Decision Process

Data User

PDP (SunXACML)

XACML

Protected

Data

PEP (XACML)

HealthRecordViewer
PEP (Java Permissions)

Access Data

Generate

XACML-Request

Set Java

Permissions

Policy Decision

Process XACML

Response

Data access by

untrusted component

(under control of

Java Security Framework)

Data access by

trusted component

Meta-Data
Browser

List Examinations

Show Examinations Access Request

Custom Class Loader

User-Authentication

Thomas Scheffler, University of Potsdam 17

Java Class Loading Hierarchy

System Class Loader

(rt.jar)

System Class Loader

(rt.jar)

Secure Class Loader

(classpath)

Secure Class Loader

(classpath)

URL Class Loader

(classpath)

URL Class Loader

(classpath)

Applet Class Loader

(www.sun.com)

Applet Class Loader

(www.sun.com)
Applet Class Loader

(www.ora.com)

Applet Class Loader

(www.ora.com)

RefMon Class Loader

(projectpath)

RefMon Class Loader

(projectpath)

XACML Class Loader

(XACML Policy 1)

XACML Class Loader

(XACML Policy 1)
XACML Class Loader

(XACML Policy 2)

XACML Class Loader

(XACML Policy 2)

Class-based Permissions

Instance-based Permissions

Thomas Scheffler, University of Potsdam 18

Usage control via the Java Security Framework

The following actions might be specified via the data policy and

can be directly enforced using Java Permissions:

� Read: Accessing the data object

� Copy: Controlling access to the OS
clipboard

� Save: Restricting general file system
access prohibits storage of data copies
outside the protected XML-Containers

� Print: Controlling access to the OS
Print-Queue for launching of print jobs

Thomas Scheffler, University of Potsdam 19

Mapping XACML -> JavaPermissions

� Actions that can be directly enforced in Java:

� Actions, that require extra cooperation from the Reference Monitor:
� Append, Delete (selective addition or deletion of data in existing

repository)
� Timing and other environmental restrictions

�

Read

�

Print

�AWT:accessClipboard

Runtime:queuePrintJob

�

Append

�

Save

�FilePermission:delete

FilePermission:write

FilePermission:read

DeleteCopyAction

Thomas Scheffler, University of Potsdam 20

Measurements (XACML Policy Evaluation)

� Java 1.5.0_14, Pentium-M III, 1,73 GHz, 1Gb RAM

Thomas Scheffler, University of Potsdam 21

Conclusion

� Implementation of Owner Controlled Data Access policies
possible
� XACML policies are able to express data owner policies

� Enforcement requires trusted enforcement infrastructure
� Java Security Framework can be adapted to automatically enforce certain

usage restrictions without cooperation of the application

� Working prototype available

Thomas Scheffler, University of Potsdam 22

Thomas Scheffler

University of Potdam, Germany

scheffler@cs.uni-potsdam.de

www.cs.uni-potsdam.de

